
Chess Playing Robotic Arm Using Stockfish
Pranav Dhakate, Onkar Gaikwad, Raman Gandewar, Prathamesh Ghalsasi, Divij Gujarathi, Anil Kadu

 Vishwakarma Institute of Technology, Pune

Abstract— With the implementation of hardware control
using an Arduino Uno microcontroller as well as the software
functionality of the Stockfish chess engine, the author reports
the build-up and installation of a visionless robotic arm to play
chess and move pieces by itself. A gripper is powered by an
MG90 servo motor, whereas a three-phase MG995 servo motor
drives base, shoulder, and elbow motion of the robotic arm.
Such a cost-saving approach demonstrates the potential of
smart robots in interactive games using minimal hardware as
calculations of inverse kinematics ensure the accurate
placement on the board without the use of a camera.

Keywords— Chess-playing robot, Stockfish engine, Arduino
Uno, MG995 servo motor, inverse kinematics, robotic arm,
autonomous systems.

I. INTRODUCTION
One of the most significant advances in robotics and artificial
intelligence is the development of robotic systems capable of
competing against human players in gaming environments,
such as chess. Chess, with its high strategic complexity, has
been at the forefront of demonstrating AI capabilities since the
mid-20th century, with milestones such as IBM's Deep Blue's
defeat of a reigning world champion in 1997. An additional
level of complexity is introduced when computation-based
intelligence is mapped onto a physical robotic platform, where
fine-grained mechanical control and sensing of the
environment become essential.
This study avoids the need for vision systems employed in
chess-playing robots through a cost-effective but efficient
methodThough extremely robust, vision systems are extremely
expensive and demand a lot of computational power and are
thus not suitable for use at home or in small educational
settings. This robotic arm uses user input as well as pre-
programmed board points to define and execute movements.
The robotic system performs fantastically due to the maximal
move generation exploitation through the Stockfish chess
engine. Meanwhile, the hardware configuration, powered by an
Arduino Uno driving MG995 and MG90 servo motors,
illustrates how cheap sensors can be leveraged to yield accurate
and consistent motion.
This research seeks to close the divide between theoretical AI
and real robotics by illustrating that the potential exists for

table software and basic hardware to be coupled to provide
smart, interactive capabilities. The main goals are to build a
structurally stable and functionally efficient robotic arm,
create a skilled control algorithm, and include the system's
ability to play a full game of chess.

II. LITERATURE REVIEW

To design a robotic arm, it’s important to understand how its
movements work including its degrees of freedom, how
easily it can reach different areas, and how much space it
operates in. A study showed that testing different setups is
crucial for a Chess-Bot, where the arm must follow game
rules within a fixed space. [1] Robots often struggle in
environments where they can’t fully “see” everything. In a
test, a 6-jointed robotic arm with a gripper still performed
well, showing that even general-purpose robots can handle
tasks like playing chess if game rules and safety are
considered. It achieved around 92% success during its turns.
[2] A good Chess-Bot needs reliable mechanical parts. Tools
like linear sliders and four-bar linkages help with piece
movement and capturing. Smart programming is equally
vital, and using algorithms like Minimax and alpha-beta
pruning helps the robot play smarter. [3] To test the bot’s
intelligence, chess engines like Leela Chess Zero (LCZero)
and Stockfish are compared. Stockfish often outperforms
LCZero, especially in complex puzzles like Plaskett's, due to
its efficient algorithms. Bellman’s equation also helps
improve the bot’s chances of winning. [4] For the robot to
understand the board, it needs solid vision. A computer vision
method using edge and shape detection was found to work
well even in low light, allowing the robot to adjust and
respond better during the game. [5] In short, designing a
Chess-Bot brings together lots of different fields like how
things move (kinematics), how to build strong parts
(mechanical design), how to make good decisions (smart
algorithms), and how to “see” (computer vision). This review
of past research gives a strong starting point for building a
smarter and more adaptive chess-playing robot. It’s all about
combining smart programming with engineering to create
robots that can play well, think smartly, and react to the world
around them.

SIRJANA JOURNAL[ISSN:2455-1058] VOLUME 55 ISSUE 6

PAGE NO : 1

III. METHODOLOGY

System Overview:-
The proposed robotic arm chess-playing system consists of two
main parts:
Software System: for move generation and coordination using
the Stockfish chess engine.
Hardware System: Robotic arm and control electronics,
responsible for executing the moves.

Hardware Design:-

Robotic Arm Configuration:

Degrees of Freedom (DOF): The arm consists three DOF for
movement (base, shoulder, and elbow) and an additional DOF
for the gripper.

Servos:
Base Joint: MG995 servo for rotational motion to align against
columns on the chess board.
Shoulder and Elbow Joints: Two MG995 servos for vertical
and horizontal positioning of the arm.
Gripper: MG90 servo for gripping and releasing chess pieces.
Material: Lightweight and rigid materials for the arm ensure
durability while maintaining Maneuverability.

Chessboard Setup:
A standard chessboard with predefined square dimensions (e.g.,
50 mm per square) is used.
The robotic arm is placed at a fixed position relative to the
chessboard (15 cm by 11.5 cm in your project).
Electronics:
Arduino Uno serves as the main microcontroller, interfacing
with the servos and the chess engine.
A power supply unit provides sufficient current to drive the
servos without voltage drops.

Software System:-

Stockfish Integration:
Stockfish, an open-source chess engine, is employed for
calculating optimal moves based on the current board state.
The engine runs on a connected computer, and moves are
communicated to the Arduino via serial communication.

Inverse Kinematics Calculations:
The location of every square on the board is translated into joint
angles for the servos through the inverse kinematics method. In
determining the actual angles required for every position, a
potentiometer recorded and measured servo angles during
manual calibration.
This method provided precision through the association of
calculated angles and real-world positions. Inputs used are:
arm base to target square distance, shoulder joint vertical
displacement from the floor, and arm segment lengths. As a
reference from potentiometer readings, well-calibrated angles
for every square (e.g., A1, B2, etc.) were calculated and stored
for ready use in actual gameplay.
Control Logic:
User enters the opponent's move through a serial monitor.
Stockfish computes the response move, which is converted to
servo angles.
The Arduino makes the move by sending PWM signals to the
servos.

Figure 1: Circuit Diagram and Flowchart

Integration Process

Calibration:
Potentiometers were employed at calibration to determine the
exact servo angles for each chess board square.
Fine-tunning ensured accurate placement for all the pre-defined
board coordinates.
Testing:

The arm is lso tested on different chess positions, ranging from
opening moves to mid-game complexity and endgame precision.
Edge cases like piece collisions or invalid inputs are managed
with error correction mechanisms.

SIRJANA JOURNAL[ISSN:2455-1058] VOLUME 55 ISSUE 6

PAGE NO : 2

IV. IMPLEMENTATION

The installation process of the chess-playing robotic arm system
involved integrating hardware and software components to
achieve a functional and efficient system. This section describes
the hardware assembly processes, software programming,
calibration, and testing processes.
Hardware Assembly:
The robot arm was built using light and strong materials for
stability and minimal weight on servo motors. The arm was
built using three (DOF)base, shoulder, and elbow and one
additional (DOF) for the gripper. The base rotation was
accomplished using an MG995 servo and the shoulder and
elbow using two MG995 servos. An MG90 servo was utilized
for the gripper to lift and release the chess pieces was driven by
a MG90 servo.
The arm was positioned in the normal position with respect to
the chess board. The arm was positioned 11.5 cm vertically and
15 cm horizontally from a corner of the board. The arm was able
to reach all tiles because to this positioning.
The servos were controlled by the Arduino Uno
microcontroller, which also handled hardware-software
communication. The Arduino was the main controller,
interpreting chess engine input into servo movement. The
system was powered by an external power supply that provided
sufficient current to power the servos during run-time in a stable
and reliable way.
Software Development:

The program was written to communicate with the Stockfish
chess engine, which determined the optimal chess moves based
on the position of the game. Stockfish was executed locally on
a computer, and the chess moves were sent to the Arduino via
serial communication. The Arduino program then translated
these moves and translated them to precise servo angles that the
robotic arm would use to make the move.

The robotic arm moved under the control of inverse kinematics.

Inverse kinematics is an algorithm to compute the joint angles
(shoulder, elbow, base) required to reach a target end effector
position of the arm. The chessboard coordinate squares were
systematically translated to joint angles for the three big servos.

The Arduino control program generated Pulse Width
Modulation (PWM) pulses for every servo, thus actuating the
servos to the proper positions for every move. The robot base
was first rotated towards the target square, then the shoulder and
elbow joints adjusted to place the gripper on top of the piece.
The gripper closed to pick up the piece, and the arm lifted it
upwards. Positioning over the target square, the arm opened the
gripper, and the chess piece would fall.

Calibration:
Calibration was an important step to find out the consistency of
the robotic arm's movement. A potentiometer was mounted on
every servo angles at different locations on the chessboard. The
arm was manually positioned at every square on the chessboard,
and the respective potentiometer values were noted.

These values were employed to realize the maximum servo
angles in every chessboard position. Using calculated angles as
a reference point compared to real angles produced by the
potentiometer in the real world enabled the pre-stored values for
angles to be calibrated to compensate for any difference.

Preparatory experiments were performed to determine the
accuracy of the robotic arm against board positions A1, B2, and
C3. Inaccuracies were corrected through the process of
incrementally tuning the servo angles to the point that the robotic
arm precisely arrived at the targeted positions.

System Integration:

Once the hardware and software components were assembled
and calibrated, the system was integrated to function as a single
system. The user input the opponent's moves through the serial
monitor in algebraic notation, e.g., "e2 to e4." The moves were
then interpreted by the Stockfish chess engine, which
determined the best move given the current state of the board.
The move was then sent to the Arduino, which operated the
robotic arm to perform the action.

Testing and Validation:

The system was tested to determine its response under actual
game conditions. The robotic arm was positioned on the board
in different opening, mid-game, and complex positions to
determine its precision, accuracy, and response time. The arm
performed the mandatory moves effortlessly, taking an average
of 10 to 15 seconds per move, depending on the complexity of
the move.

Stress testing was also conducted to determine the robustness of
the robotic arm and its performance in cases of prolonged usage.
The system was also subjected to prolonged game playing
sessions to verify that the servo motors showed consistent
performance.

 V. OUTPUT

Figure 2: Working Model of Chess-Bot

The robot arm, which was specially made to play chess, was
thoroughly tested under different conditions to prove its
performance, accuracy, and speed. The findings are described as
follows:
Precision in Move Execution:
The robotic arm moved to the position of chess pieces with
precision.
Position mistakes for the coordinates provided were 2 mm, and
that is okay for playing chess.
Potentiometer-based calibration integrated introduced
consistency to accuracy in play.

SIRJANA JOURNAL[ISSN:2455-1058] VOLUME 55 ISSUE 6

PAGE NO : 3

Table 1: Precision Table (distance in mm)

Gameplay Simulation:

It was tested on simulated games against human opponents using
the Stockfish chess engine.

The robotic arm successfully played a complete game of chess
with no hardware or software failure.

Stockfish moves were played smoothly with an average move
completion time of 10-15 seconds.
System Stability:

The servo motors performed continuously over prolonged
durations of time, providing uniform torque and speed.

The gripper mechanism, controlled by the MG90 servo, lifted
and released chess pieces safely without loss or damage.
User Interaction:

The system needed input for opponent moves, and this was
transferred appropriately through the serial monitor.

Error-handling procedures were put in place to handle input that
was in error or under abnormal conditions, e.g., trying to make
moves with non existent pieces.

 VI. CONCLUSION

This study is a demonstration of an affordable, visionless
robotic chess-playing system solution by using the Stockfish
chess engine along with inverse kinematics and servo-based
control. The system is highly accurate and reliable with the
removal of costly vision systems. Inverse kinematics enables
the robotic arm to determine joint angles for precise piece
placement on the chessboard to enable smooth interaction with
the game.

The project demonstrates the viability of integrating software
intelligence into mechanical systems for interactive devices,
providing the basis for future research in recreational and
educational robotics. Through the use of inexpensive hardware,
robotic systems are made available to a broader audience,
ranging from schools and hobbyists.

Overall, this research paper provides a key to making greater
progress in robotics so that low-cost effective learning and
playing systems can be developed.

VII. REFERENCES

[1] Pichai, K. (2023). A Retrieval-Augmented Generation Based Large Language
Model Benchmarked on a Novel Dataset. Journal of Student Research,
Volume 12, Issue 4.

[2] Gobet, F., & Lane, P. C. R. (2012). Chunking mechanisms and learning. In
N. M. Seel (Ed.), Encyclopedia of the Sciences of Learning. New York, NY:
Springer.

[3] Webster, J. J., & Kit, C. (1992). Tokenization as the Initial Phase in NLP.
Proceedings of the COLING-92: International Conference on Computational
Linguistics, Nantes, France, August 23-28, 1992. Association for
Computational Linguistics. doi: 10.3115/992424.992434.

[4] Gongde Guo, Hui Wang, Yaxin Bi, David A. Bell, KNN Model-Based
Approach in Classification, August 2004,
https://www.researchgate.net/publication/2948052.

[5] Kovan Mzwri, Turcsányi-Szabó Márta, Chatbot Development using APIs
and Integration into the MOOC, Central-European Journal of New
Technologies in Research Education and Practice,
DOI:10.36427/CEJNTREP.5.1.5041

SIRJANA JOURNAL[ISSN:2455-1058] VOLUME 55 ISSUE 6

PAGE NO : 4

SIRJANA JOURNAL[ISSN:2455-1058] VOLUME 55 ISSUE 6

PAGE NO : 5

