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ABSTRACT.  

                    A subclass of harmonic univalent functions is defined using generalized derivative 

operator and we have obtained among others results like, coefficient inequalities, distortion 

theorem and convex combination. 
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1. INTRODUCTION 

                        A continuous function ( )f z  is said to be a complex-valued harmonic function in 

a simply connected domain D  in complex plane C  if both Re( )f and  Im( )f are real harmonic       

in D . Such functions can be expressed as  

                          ( ) ( ) ( ) (1.1)f z h z g z                                                                           
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where ( )h z  and ( )g z  are analytic in D . We call ( )h z as analytic part and ( )g z  as co-analytic 

part of ( )f z . A necessary and sufficient condition for ( )f z   to be locally univalent and sense-

preserving in D  is that ' '( ) ( )h z g z  for all z  in D . [2] 

                   Let HS be the family of functions of the form (1.1) that are harmonic, univalent and 

orientation preserving in the open unit disk { : 1}U z z  , so that   ( ) ( ) ( )f z h z g z   is 

normalized by (0) (0) (0) 1 0.zf h f     Further ( ) ( ) ( )f z h z g z  can be uniquely determined 

by the coefficients of power series expansions.  

                      
1

2 1

( ) , ( ) , , 1, (1.2)p p
p p

p p

h z z a z g z b z z U b
 

 

                                        

where pa C  for 2,3, 4,...p   and  pb C  for 1, 2,3,...p   

We note that this family HS was investigated and studied by Clunie and Sheil-Small [2 ] and it 

reduces to the well-known family S  the class of all normalized analytic univalent functions  

( )h z  given in (1.2), whenever  the co-analytic part  ( )g z  of ( )f z  is identically zero.  

Let HS denote the subfamily of HS consisting of harmonic functions of the form  

                                       ( ) ( ) ( )n nf z h z g z   

Where             n
p n p 1

p=2 p=1

h(z)=z+ a  ,    g (z)=(-1) , , 1. (1.3)p pz b z z U b
 

                                                      

For ( ) ( ) ( )f z h z g z   given by(1.1),  we define the derivative operator introduced by Shaqsi 

and Darus [8] of ( )f z as, 

                               , , ,( ) ( ) ( 1) ( ) , (1.4)n n n n
m m mD f z D h z D g z    

                                                                                  

where 

                           
 ,

2

( ) 1 ( 1) ( , )
n

n p
m p

p

D h z z p C m p a z 
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1

1
( ) 1 ( 1) ( , ) , 1, ( , ) .

n
n p
m p

p

p m
D g z p C m p b z b C m p C

m 




  
      

 
    

Definition: The function ( ) ( ) ( )f z h z g z  defined by (1.2) is in the class ( , , , , )HS n m k   if  

                      

1 1
, ,

, ,

( ) ( )
Re 1 (1.5)

( ) ( )

n n
m m

n n
m m

D f z D f z
k

D f z D f z
 

 


       

  
                                                                                 

where 0 k   , 0 1.   

Also let  

            ( , , , , ) ( , , , , ) (1.6)H H HS n m k S n m k S                                                                                   

                We note that by specializing the parameter, especially when 0,k  ( , , , , )HS n m k    

reduces to well-known family of starlike harmonic functions of order   . In recent years many 

researchers have studied various subclasses of HS  for example [1],[3],[4],[6]and [8].  

               In the present paper we aim at systematic study of basic properties, in particular 

coefficient bound , distortion theorem and extreme points of aforementioned subclass of 

harmonic functions.  

2. MAIN RESULTS 

Theorem1: Let ( ) ( ) ( )f z h z g z    be given by (1.2). If condition  

     
   

     
   

1

1 1 1 1 1 1 1 1 1 1
, , 2

1 1

(2.1)

n n

p p
p

p k p k p k p k
C m p a C m p b

     

 





                                         


where  1 1, 0 1, 0 , 0 ,a k n N       
                                                                

then ( )f z is sense-preserving harmonic univalent in U  and ( , , , , ).Hf S n m k    

Proof: If the inequality (2.1) holds for coefficients of ( ) ( ) ( )f z h z g z   then by (1.2), ( )f z  is 

orientation preserving and harmonic univalent in .U  Now it remains to show that  

( , , , , )Hf S n m k   . According to (1.4) and (1.5) we have  
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1 1
, ,

, ,

( ) ( )
Re 1

( ) ( )

n n
m m

n n
m m

D f z D f z
k

D f z D f z
 

 


       

  
     

which is equivalent to  
( )

Re
( )

A z

B z


 
 

 
  

where   1
, ,( ) 1 ( ) ( )n n

m mA z k D f z kD f z 
   and  ,( ) ( )n

mB z D f z  

Using the fact that, Re( )w   if 1 1w w     
 
it suffices to show that  

   ( ) 1 ( ) ( ) 1 ( )A z B z A z B z       substituting values of A(z)  and B(z)  with simple 

calculations we led to 

               

             

2 1 1 1 1 1 1 ( , ) 1 1 1 1 1 1 1 ( , )
2 1

1 1 1 1 1 1 ( , ) 1 1 1 1 1 1 1 ( , )

pn np nz p k p k C m p a z p k p k C m p b zpp
p p

n np nz p k p k C m p a z p k p k C m p
p

      

      

 
                                          

 

                                        
2 1

p
b zp

p p

 
 
 

 

       

       

2

1

2 1 1 1 2 1 1 1 2 2 ( , )

1 1 1 2 1 1 1 2 2 ( , )

n p

p
p

pnn
p

p

z p k p k C m p a z

p k p k C m p b z

   

  









                  

                 




 

   
   

 

   
   

 

1

2

1

1

1 1 1
2 1 1 1 1 ( , )

1

1 1 1
1 1 1 ( , ) 0.

1

n p

p
p

pnn
p

p

k p k
z p C m p a z

k p k
p C m p b z

 
 



 









 



                    
                   





 

By assumption. Hence proof is completed.  
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The functions 

 
     

 
     2 1

1 1
( )

1 1 1 1 1 1 1 1 1 1

pp
p pn n

p p

f z z x z y z
p k p k p k p k

 

     

 

 

         
                                        

 

 

where  
2 1

1p p
p p

x y
 

 

                                                                                                  (2.3)  

shows that the coefficient bound given (2.1) is sharp.  

Theorem 2: Let ( ) ( ) ( )n nf z h z g z   be so that ( )h z and ( )ng z  given by (1.6). Then 

( , , , , )n Hf S n m k    if and only if  

     
 

     
 

1

1 1 1 1 1 1 1 1 1 1
( , ) ( , ) 2,

1 1

(2.4)

n n

pp

p

p k p k p k p k
C m p a C m p b

     

 




                                         

                              

where 1 1,0 1,0 .a k     
. 

Proof: The if part follows form Theorem1 with the fact the 

( , , , , ) ( , , , , ).H HS n m k S n m k      For only if part, we show that ( , , , , )n Hf S n m k    if 

the condition (2.4) is not satisfied. Note that necessary and sufficient condition for Let 

n nf h g   given by (1.6) to be in ( , , , , )HS n m k    is that  

                            

1 1
, ,

, ,

( ) ( )
Re 1

( ) ( )

n n
m m

n n
m m

D f z D f z
k

D f z D f z
 

 


       

  
 

which is equivalent to  

                           

   1
, ,

,

1 ( ) ( )
Re

( )

n n
m m

n
m

k D f z k D f z

D f z
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2

2

1

2

2

1

1 1 1 1 1 1 ( , )

1 1 1 1 1 1 ( , )

Re 0.
1 1 ( , )

1 1 1 ( , )

n p
p

p

pnk
p

p

n p
p

p

pnk
p

p

z p k p k C m p a z

p k p k C m p b z

z p C m p a z

p C m p b z

   

  




















                  
 
 

                    
      
 
        









 

The above conditions must hold for all values of z , 1z r  . Choosing  z  on positive axis 

where 0 1z r   . we have  

       

       

       

     

1

2

2 1

1

21 1

2 1

1 1 1 1 1 1 ( , )

1 1 1 1 1 1 ( , )

0. (2.5)
1 1 ( , ) 1 1 1 ( , )

n p
p

p

nk p
p

p

n nkp p
pp

p p

z p k p k C m p a r

p k p k C m p b r

z p C m p a r p C m p b r

   

  

 










 

 

 

                

                


            





 
                          

or equivalently if the condition (2.4) dose not hold then the numerator in (2.5) is negative for r 

sufficiently close to 1.  

Thus there exists 0 0z r  in (0,1) for which the quotient in (2.5) is negative .This contradicts that 

required condition for ( , , , , )n Hf S n m k     and hence proof is completed.  

Theorem 3: Let nf  be given by (1.6). Then  , ;n Hf S k n  if and only if  

   
1

( ) ( )
pn p p p n

p

f z x h z y g z




    

where,  1( ) 1,h z    

 
     

1
( ) , 2,3,4,...

1 1 1 1 1

p
p nh z z z p

p k p k
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1 1
( ) 1 , 1,2,3,...

1 1 1 1 1
p

n p
n ng z z z p

p k p k



  
 

   
               

  and  

0, 0p px y  ,   1
2

1 0p p
p

x x y




    .  

In particular, the extreme points of ( , , , , )HS n m k     are  nh and  png .  

Proof: Let  

                    
1

( ) ( )
pn p p p n

p

f z x h z y g z
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1 1 1 1 1

1
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1 1 1 1 1

p
p p pn

p p

pn

pn
p

x y x z
p k p k

y z
p k p k



  



  

 

 







  

               


 
               

 


 

Then  
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1 1 1 1 1

1

1 1 1 1 1

1

n

p
p

n

p
p

p k p k
a

p k p k
b

  



  











               


               






 

                     
1

2 1

1 1p p
p p

x y x
 

 

        

and so ( , , , , )n Hf S n m k   .  

Conversely, suppose that ( , , , , ).n Hf S n m k     
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Setting  

              

     
 

     
 

1 1 1 1 1
, 2,3,...

1

1 1 1 1 1
, 1,2,3,...

1

n

p p

n

p p

p k p k
x a p

p k p k
y b p

  



  



                


                


 

where  
1

1p p
p

x y




   we obtain    
1

( ) ( )
pn p p p n

p

f z x h z y g z




   as required.  

Theorem 4: Let  ( , , , , )n Hf S n m k  
 
then for 1z r   

we have  

 
 

 
  

  
  

2
1 1

1 1 11
( ) 1

1 1 1 12
n n

k k
f z b r b r

k k k k

  
   

          
         

 

and 

 
 

 
  

  
  

2
1 1

1 1 11
( ) 1

1 1 1 12
n n

k k
f z b r b r

k k k k

  
   

          
         

 

Proof. Let  ( , , , , )n Hf S n m k    .Taking absolute value of nf  we obtain  

    1
2

( ) 1 p
n p p

p

f z b r a b r




     

                2
1

2

1 p p
p

b r a b r




     

   
    

    
    2

1
2

2 1 11
1

12 1 1

n

p pn
p

k k
b r a b r

k k

  
  





                       
  

   
    

    
 

    
 

2
1

2

2 1 1 2 1 11
1

1 12 1 1

n n

p pn
p

k k k k
b r a b r

k k
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2
1 1

1 1 11
1 .

1 1 1 12
n

k k
b r b r

k k k k

  
   

          
         

 

The forthcoming result follows from left hand inequality in Theorem 2.4. 

Theorem 5:The class of  ( , , , , )HS n m k     is closed under convex combination.  

Proof: For 1,2,3,...i  suppose   ( , , , , )
in Hf z S n m k    where  

 
2 1

1
i

pnp
n ip ip

p p

f z a z b z
 

 

      

then by Theorem 2  

                       

     
 

     
 

2

2

1 1 1 1 1

1

1 1 1 1 1
1. (2.6)

1

n

ip
p

n

ip
p

p k p k
a

p k p k
b

  



  











               


                






              

For 
1

1i
i

t




 , 0 1it  ,  the convex combination of 
inf may be written as  

  
1 2 1 1 1

( 1)
i

pp n
i n i ip i ip

i p i p i

t f z z t a z t b z
    

    

         
   

      

hence by (2.6)  

           

     
 

     
 

2 1

1 1

1 1 1 1 1

1

1 1 1 1 1

1

n

i ip
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p k p k
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and therefore   
1

( , , , , )
ii n H

i

t f z S n m k  




  

This completes the proof.  
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